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Abstract

We propose in this paper a new deconvolution approach, which uses both the wavelet
transform and the curvelet transform in order to benefit from the advantages of each

of them. We illustrate the results with simulations.
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1 Introduction

It has been shown [12] that, for denoising problems, the curvelet transform

approach outputs a PSNR comparable to that obtained via the undecimated
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wavelet transform, but the curvelet reconstruction does not contain as many
disturbing artifacts along edges that one sees in wavelet reconstructions. Al-
though the results obtained by simply thresholding the curvelet expansion
are encouraging, there is of course ample room for further improvement. A
quick inspection of the residual images resulting from the Lena image filtering
for both the wavelet and curvelet transforms shown in Figure 1 reveals the
presence of very different features. For instance, wavelets do not restore long
edges with high fidelity while curvelets are challenged by small features such

as Lena’s eyes. Loosely speaking, each transform has its own area of expertise

and this complementarity may be of great potential.

Fig. 1. Residual following thresholding of the undecimated wavelet transform and

thresholding of the curvelet transform.

In [11], a denoising algorithm was proposed which investigates this comple-
mentarity, by combining several multiscale transforms in order to achieve very
high quality image restoration. Considering K linear transforms 773, ... , Tk,
the method consists of minimizing a functional such as the Total Variation
(TV) or the /; norm of the multiscale coefficients, but under a set of con-

straints in the transform domains. Such constraints express the idea that if a



significant coeflicient is detected by a given transform 7} at a scale 5 and at a
pixel position (z,y), then the transformation of the solution must reproduce
the same coefficient value at the same scale and the same position. In short,
the constraints guarantee that the reconstruction will take into account any

pattern which is detected as significant by any of the K transforms.

Several papers have been recently published, based on the concept of mini-
mizing the total variation under constraints in the wavelet domain [6,3,9] or
in the curvelet domain [2]. The combined filtering approach [11] can be seen

as a generalization of these methods.

Section 2 introduces the deconvolution problem, and discusses different wavelet
based methods and section 3 shows how a deconvolution can be derived from

a combined approach.

2 Wavelets and Deconvolution

Consider an image characterized by its intensity distribution I, corresponding
to the observation of a “real image” O through an optical system. If the
imaging system is linear and shift-invariant, the relation between the data
and the image in the same coordinate frame is a convolution: I(z,y) = (P *
O)(z,y) + N(x,y), where P is the point spread function (PSF) of the imaging
system, and N is additive noise. We want to determine O(z,y) knowing [
and P. This inverse problem has led to a large amount of work, the main
difficulties being the existence of: (i) a cut-off frequency of the PSF, and (ii)

the additive noise (see for example [1]).

The wavelet based non-iterative algorithm, the wavelet-vaguelette decomposi-



tion [5], consists of first applying an inverse filtering (F = P~'xI+P~'xN =

O+ Z where P~1(v) = P(lu))' The noise Z = P! % N is not white but remains

Gaussian. It is amplified when the deconvolution problem is unstable. Then,
a wavelet transform is applied on F', the wavelet coefficients are soft or hard

thresholded [4], and the inverse wavelet transform furnishes the solution.

The method has been refined by adapting the wavelet basis to the frequency
response of the inverse of P [7]. This leads to a special basis, the Mirror
Wavelet Basis. This basis has a time-frequency tiling structure different from
the conventional wavelets one. It isolates the frequency v, where P is close
to zero, because a singularity in P~ !(v,) influences the noise variance in the
wavelet scale corresponding to the frequency band which includes v,. Because
it may not be possible to isolate all singularities, Neelamani [10] has advo-
cated a hybrid approach, and proposes to still use the Fourier domain to
restrict excessive noise amplification. These approaches are fast and compet-
itive compared to linear methods, and the wavelet thresholding removes the
Gibbs oscillations. This presents however several drawbacks: (i) the first step
(division in the Fourier space by the PSF) cannot always be done properly,
(ii) the positivity a priori is not used, and (iii) it is not trivial to consider

non-Gaussian noise.

As an alternative, several wavelet-based iterative algorithms have been pro-
posed [13], especially in the astronomical domain where the positivity a priori
is known to improve significantly the result. The simplest method consists
of first estimating the multiresolution support M (i.e. M(j,z,y) = 1 if the
wavelet transform of the data presents a significant coefficient at band j and

at pixel position (z,y), and 0 otherwise), and to apply the following iterative



scheme:
O™ = 0"+ P*x W' [MW(I — P % 0")] (1)

where W is the wavelet transform operator. At each iteration, information
is extracted from the residual only at scales and positions defined by the
multiresolution support. M is estimated from the input data and the correct

noise modeling can easily be considered.

3 The Combined Deconvolution Method

Similar to the filtering, we expect that the combination of different trans-
forms can improve the quality of the result. The combined approach for the

deconvolution leads to two different methods.

If the noise is Gaussian and if the division by the PSF in the Fourier space
can be carried out properly, then the deconvolution problem becomes a filter-
ing problem where the noise is still Gaussian, but not white. The Combined
Filtering Algorithm can then be applied using the curvelet transform and the
wavelet transform, but by estimating first the correct thresholds in the dif-
ferent bands of both transforms. Since the mirror wavelet basis is known to
produce better results than the wavelet basis, it is recommended to use it

instead of the standard undecimated wavelet transform.

An iterative deconvolution method is more general and can always be applied.
Furthermore, the correct noise modeling can much more easily be taken into
account. This approach consists of detecting, first, all the significant coeffi-

cients with all multiscale transforms used. If we use K transforms 77, ..., Tk,



we derive K multiresolution supports M;,..., Mg from the input image [

using noise modeling.

For instance, in the case of Poisson noise, we apply the Anscombe transform
to the data (i.e. A(J) =24/ + 2). Then we detect the significant coefficients
with the kth transform T}, assuming Gaussian noise with standard deviation
equal to 1, in T A([) instead of T I. My(j,z,y) = 1 if a coefficient in band j at
pixel position (z,y) is detected , and M(j, z,y) = 0 otherwise. For the band
J which corresponds to the smooth array in transforms such as the wavelet or

the curvelet transform, we force My (J, z,y) =1 for all (z,y).

Following determination of a set of multiresolution supports, we propose to

solve the following optimization problem:

minS(0), subject to O € C, (2)
where S is an edge preservation penalization term defined by:
8©0)= [1VO I,
with p = 1.1. C is the set of images O which obey the two constraints:

(1) O > 0 (positivity).

(2) MyTiI = MTy[P % O], for all k.

The second constraint imposes fidelity to the data, or more exactly, to the
significant coefficients of the data, obtained by the different transforms. Non-
significant (i.e. noisy) coefficients are not taken into account, preventing any

noise amplification in the final algorithm.

The solution is computed by using the projected Landweber method [1]:



O™ =P, |0" + a(P*+ R" — L;E)O)) (3)

where P, is the projection operator which enforces the positivity (i.e. set to 0
all negative values). R" is the significant residual which is obtained using the

following algorithm:

e Set I" =" = P xO".
o Fork=1,...,K doIp = If , + T [My(Til — Tilp )]

e The significant residual R" is obtained by: R® = I — I™.

a is a convergence parameter and A is the regularization hyperparameter.
Since the noise is controlled by the multiscale transforms, the regularization
parameter does not have the same importance as in standard deconvolution
methods. A much lower value is enough to remove the artifacts relative to the
use of the wavelets and the curvelets. The positivity constraint can be applied

at each iteration.

Figure 2, top, shows the Logan-Shepp Phantom and the simulated data, i.e.
original image convolved by a Gaussian PSF (full width at half maximum,
FWHM=3.2) and Poisson noise. Figure 2, bottom, shows the deconvolution
with (left) a pure wavelet deconvolution method (no penalization term) and

(right) the combined deconvolution method (parameter A = 0.4).
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