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ABSTRACT

Features are derived from wavelet transforms of images containing a mixture of textures. In each case, the
texture mixture is segmented, based on a 10-dimensional feature vector associated with every pixel. We
show that the quality of the resulting segmentations can be characterized using the Potts or Ising spatial
homogeneity parameter. This measure is defined from the segmentation labels. In order to have a better
measure which takes into account both the segmentation labels and the input data, we determine the
likelihood of the observed data given the model, which in turn is directly related to the Bayes information
criterion, BIC. Finally we discuss how BIC is used as an approximation in model assessment using a Bayes
factor.

1. INTRODUCTION

A great deal of work has been carried out on automated segmentation of texture images since Cross and
Jain? took the ideas of Besag! and applied them to realistic textures. Such work is based on a Markov model
of spatial context. The wavelet transform has been frequently used in order to provide an embedding of the
image in a multidimensional feature space. Local energy at a range of wavelet transform bands are often
used.? The input for segmentation is therefore a multiband image. In this work we develop a new approach
to the performance evaluation of segmentation algorithms. We show how a Bayes factor, approximated by
the Bayes information criterion, can be used to compare one result against another.

2. DATA, FEATURES AND SEGMENTATION

In this work, a range of synthetic images were used, each composed of texture regions (see Results section
below). All image dimensions are 200 x 200.

A three-level (see Figure 1) Mallat wavelet transform was applied to each image, using biorthogonal 9/7
tap filters. An energy (defined as the cardinality-normalized sum of absolute values of wavelet coefficients)
was determined in each wavelet band, at each level (cf. Figure 1).

Since texture is a characteristic of a local region, the wavelet transform was carried out in 65 x 65
sliding windows. Thus each pixel was associated with a 10-valued feature vector, where these features
were provided by the set of wavelet band energies. The wavelet transform was carried out in the window
centered on the given pixel.

The principal component image used below (Figure 2) was carried out on the 10-dimensional feature
space, and explained 67.3% of the variance.

Two segmentation methods were applied. One did not, and the second one did, take local neighbor
information into account in carrying out the segmentation. The former method was a Gaussian mixture
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Figure 1. Ten bands, shown here, were used, following the wavelet transform. From these one energy
was used to characterize each band.

model, fit to the 10-dimensional data, x;, for each pixel i. The EM (expectation-maximization) algorithm
was used. For K states, the probability density for this model is

K
F@il 0,7) = > Mefu(ilor), (1)
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where model parameters 0, = the set of mean vectors and variance-covariance matrices, {ug, Vi }; fi(-|0k) is
a Gaussian density with mean py, and variance-covariance matrix Vi; 0 = (0y,...,0k); and A = (Aq, ..., Ak)
is a vector of mixture probabilities such that A, >0 (k=1,...,K) and 21521 A = 1.

Given observations x = (z1,...,%10), let v be an unobserved 10 x K cluster assignment matrix, where
Vi = 1 if ; comes from the k-th group, and v;; = 0 otherwise. Our goals are to determine the number
of clusters K, to determine the cluster assignment of each pixel-vector, and to estimate the parameters
and Vi of each cluster. In this implementation, we imposed a condition of independence, implying that
the variance-covariance matrix is diagonal for each cluster.

We estimate the parameters by maximum likelihood using the EM (expectation-maximization) algo-
rithm.?” The EM algorithm iterates between the E step and the M step. In the E step, the conditional
expectation, ¥, of v given the data and the current estimates of # and X is computed, so that ;5 is the
conditional probability that z; belongs to the k-th group. In the M step, conditional maximum likelihood
estimators of 6 and A given the current 4 are computed.

So far, no local information has been used. We rewrite eqn. 1 as follows:

K
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Weighting parameter « satisfies oy > 0 and ), ap = 1. Let N(z;) be the neighborhood of z;, taken here
as a second order neighborhood of adjacent 5 x 5 pixels. Let U(N(z;), k) be the number of neighborhood
pixels with state k. We define the weighting parameter for label or class k as:

o = DUV (). )
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(3)



Note that this is the density of pixel i being labeled k, conditional on the neighborhood, i.e. p(z; =
k| N(z;)). Cf. eqn. 4 below. This probability model for z; is the Potts or Ising model, with spatial
homogeneity parameter set to 1.

To help avoid finding local optima in the EM iterations, a stochastic optimization scheme motivated by
simulated annealing is used. A temperature schedule is taken as proportional to the inverse of the iteration
number. The temperature, 7 is then used in the multivariate Gaussian: exp(—xp(z; — p)'V = (z; — p)).

3. MARKOV MODELING AND BAYESIAN MODEL SELECTION
3.1. The Markov Model

We consider an unknown, true pixel state, for pixel i, as z; € {1,2,... K} for K states. The observed
image pixel is y;. In this work this is taken as a 10-valued vector. Consider an indicator function,
I(z;,2;) =1 if z; = 2; and otherwise = 0.

We now use a Markov random field to define spatial structure on z. We take p(z) as being proportional
to exp(¢ >, ; I(zi,x;)). This is a Potts or Ising model. ¢ is a spatial homogeneity parameter, a small value
implying randomness, and a large value implying uniformity. A negative value of ¢ implies dissimilarity
between neighboring pixels, and is not of interest here. Our model is a hidden Markov model, HMM,
because the variables X are only known through the observed Y.

Let N(z;) be the neighborhood of z;, taken here as adjacent 3 x 3 pixels. Let U(N(z;),k) be the
number of neighborhood pixels with state k.

From p(z) we have the conditional distribution:
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Alternative notation: define energy U(x) = —83,_; d(z; — z;). The summation is over all neighboring
pairs. §(.) is a delta function, and 3 is the model or homogeneity parameter. The probability distribution
over all possible images is: p(x| ) = 1/Z(5) exp(BN(x)). N(x) is the number of homogeneous cliques
in the image, x, and is equivalent to the boundary length between segments. Z is termed the partition
function.

Background on the approach pursued here can be found in.%1%9

3.2. Likelihood of Observed Data Given the Model

Having looked at the latent space, we now return to the observed data. We assume the following conditional
density model connecting the observed and hidden variables: f(y; | z; = j) is Gaussian with mean vector
p; and variance-covariance matrix V;. The Y; are conditionally independent given the x; or, alternatively
expressed, dependence among the y; only occurs via dependence among the x;. Call 8, the set of parameters,
(pk, Vi) for state k. We have f(y | z) = ILif(y; | ;) = ILif (i | 02;). This will be used below to calculate
the integrated likelihood.

3.3. Potts Parameter, ¢

Determine ¢ using the maximum pseudolikelihood: ¢ = argmin,(—log PL(z | ¢)). The pseudolikelihood
is given by PL(z | ¢) = ILip(x; | N (zi, $)).



3.4. Bayes Information Criterion

A model Mg is the set of parameters estimated for a given number of segments, K. Consider data D. The
posterior probability of model Mg is

p(D | Mk)p(Mk)
1% p(D | My )p(My,)
We can ignore p(Mf) and the influence of My, if each model is equi-likely a priori.

p(Mk | D) =

The ratio of posteriors, p(D | My)/p(D | M) is referred to as a Bayes factor® for model My against
model Mg:.

The integrated likelihood, p(D | M), is given by

p(D | Mx) = [ (D | 6xc, Mi)p(6s) b

where O is the set of parameters for model My, p(D | 0k, M) is the usual likelihood, and p(fx) is the
prior. Evaluating this integral is combinatorially difficult, so an approximation which is often used is as
follows:

2logp(D | Mk) =~ BIC

where R
BIC = 2logp(D | Ok, M) — N log(dim(0x))

where éK is the maximum likelihood estimator of 0, dim(fx) is the number of parameters estimated
(constant, if we assume a fixed number of segments, as we do in each experiment below), and N is
cardinality of the data (again, fixed in the experiments below).

In these circumstances, we see that the likelihood, integrated over all pixels, is the crucial term.>!0

The results below give the log likelihood found in each case.

4. RESULTS

All figures shown here were independently histogram-equalized. Figures 2, 3 and 4 relate to three different
studies. Note that in each case the most acceptable result has the largest value of the Potts spatial
parameter, ¢. In Figure 2, the principal component result is quite poor in that it gives the same label to
two of the main segments. The non-locally based result is visually less good in each case, compared to the
locally based result. A larger value of ¢ corresponds to wider or broader spatial influence. Therefore it is
a very reasonable measure of quality of segmentation. However it is based exclusively on the segmentation
labels, and it is not difficult to arbitrarily define segmentations associated with high values and which have
little or no link with the input data.

In Figures 2, 3 and 4, a larger BIC also corresponds to a better result. The measure used in each
case is the conditional likelihood of the observed data on the model, L(y | K). These measures, too, are
consistent with the spatial homogeneity measures.

5. CONCLUSION

The quantitative assessment criteria presented here have been shown to be consistent with visual assess-
ment of segmentation performance. They can be used with any optimization method for inducing the
segmentation. Of the segmentation approaches used here, we see that the multidimensional segmentation
performs best. In particular we see that a principal component image performs poorly.
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Figure 2. Clockwise from upper left: Input image. Non-locally based segmentation: ¢ = 0.7755, BIC

= —1014900. Locally based segmentation: ¢ = 2.7161, BIC = —1009171.

Segmentation of principal
component image: ¢ = 0.7311, BIC = —1038317.



Figure 3. Clockwise from upper left: Input image. Non-locally based segmentation: ¢ = 0.7755, BIC =
—941616. Locally based segmentation: ¢ = 2.7244, BIC = —935675 .



Figure 4. Clockwise from upper left: Input image. Non-locally based segmentation: ¢ = 0.9151, BIC =
—913033. Locally based segmentation: ¢ = 10.882176, BIC = —912524 .
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